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COVERING 3-COLOURED RANDOM GRAPHS

WITH MONOCHROMATIC TREES

Y. KOHAYAKAWA, W. MENDONÇA, G. MOTA and B. SCHÜLKE

Abstract. We investigate the problem of determining how many monochromatic
trees are necessary to cover the vertices of an edge-coloured random graph. More

precisely, we show that for p �
(

lnn
n

)1/6
in any 3-colouring of the random graph

G(n, p) we can find 3 monochromatic trees such that their union covers all vertices.

This improves, for three colours, a result of Bucić, Korándi and Sudakov [Cover-
ing random graphs by monochromatic trees and Helly-type results for hypergraphs,

arXiv:1902.05055]

1. Introduction

The investigation of questions concerning covering graphs with monochromatic
components started with Gerencsér and Gyárfás [5], who proved that in any 2-
colouring of the edges of Kn there are two monochromatic paths that cover the
vertex set of Kn. Pokrovskiy [10] proved a similar result for three colours, namely,
he showed that the vertices of any 3-edge-coloured Kn can be covered with three
monochromatic paths. However, for r ≥ 4 colours it is not known if it is possible
to cover the vertices an r-edge-coloured Kn with r monochromatic paths. In
the last decades, many researchers have investigated the problem of covering (or
partitioning) coloured graphs with monochromatic components (see, e.g., [7] for a
survey).

Initiating the study of covering random graphs by monochromatic components,
Bal and DeBiasio [2] posed a conjecture concerning the threshold for the following
property: every r-colouring of the edges of G yields r monochromatic trees that
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cover (or partition) the vertex set of G. Given a graph G = (V,E), let tcr(G)
denote the minimum number k such that in any r-colouring of E, there are k
monochromatic trees T1, . . . , Tk such that

V (T1) ∪ · · · ∪ V (Tk) = V ,

i.e., V can be covered by at most k sets each containing a spanning monochromatic
tree.

Bal and DeBiasio [2] proved the following result.

Theorem 1. Let G = G(n, p). For any integer r ≥ 2, there exists C ≥ r such
that if p ≥ (C lnn

n )1/(r+1), then a.a.s. tcr(G) ≤ r2.

They also made the following conjecture.

Conjecture 2. Let G = G(n, p). For any integer r ≥ 2 and ε > 0, if p ≥
(1 + ε)

(
r lnn
n

)1/r
, then a.a.s. we have tcr(G) ≤ r.

A stronger version of Conjecture 2 (obtaining a partition instead of a cover-
ing) for two colours was confirmed by the first and third authors together with
Schacht [9], but however the third author, Ebsen and Schnitzer showed that this
conjecture does not hold for more than two colours (see [9, Proposition 4.1]).
More precisely, they showed that for r ≥ 3, we have tcr(G(n, p)) ≥ r + 1, a.a.s.,

for p � (lnn/n)
1/(r+1)

. Recently, Bucić, Korándi and Sudakov [3] showed that
the right threshold for the property tcr(G) ≤ r is far from being known. More
precisely they proved the following result.

Theorem 3 (Bucić, Korándi and Sudakov [3, Theorem 1.1]). For any positive
integer r there are constants c and C such that, for G = G(n, p),

(i) if p <
(
c lnn
n

)√r/2r−2

, then a.a.s. tcr(G) ≥ r + 1, and

(ii) if p >
(
C lnn

n

)1/2r
, then a.a.s. tcr(G) ≤ r.

They also proved the following result that provides bounds for tcr(G(n, p)) in
some intermediate range of p.

Theorem 4 (Bucić, Korándi and Sudakov [3, Theorem 1.4]). For any integers

k > r ≥ 2 there are constants c and C such that, for G = G(n, p), if
(
C lnn

n

)1/k
<

p <
(
c lnn
n

)1/(k+1)
, then a.a.s. r2

20 ln k ≤ tcr(G) ≤ 16r2 ln r
ln k .

Theorem 3, in particular, implies that we have tc3(G(n, p)) ≤ 3 a.a.s., for

p �
(

lnn/n
)1/8

. On the other hand, Theorem 4 implies that tc3(G(n, p)) ≤ 88

a.a.s., for (lnn)/n)1/6 � p� (lnn/n)1/7. Our result improves those bounds.

Theorem 5. Let G = G(n, p). If p = p(n)�
(
lnn
n

)1/6
, then a.a.s. tc3(G) ≤ 3.

From the example described in [9], we have that a.a.s. tc3(G(n, p)) ≥ 4, for

p �
(
lnn
n

)1/4
. It would be very interesting to describe the behaviour of tcr(G)

when
(
lnn
n

)1/4 � p�
(
lnn
n

)1/6
.
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In the proof of Theorem 5, after being given a 3-colouring to the edges of
G = G(n, p), we create an auxiliary graph F as follows: F has the same vertex set
of G and there is an edge between two vertices u and v in F if and only if there is
a monochromatic path between u and v in G. We colour the edges of F by giving
any edge uv the colour of the monochromatic path between u and v in G. Then,
we analyse three cases, depending on the value of α(F ), and show that in any case
we can cover V (G) with at most three monochromatic trees. See Section 2 for an
elaboration of this sketch.

2. Proof overview

In this section we will give an overview of the proof of Theorem 5. Let G =

G(n, p), with p �
(
lnn
n

)1/6
, and let c : E(G) 7→ {red, green,blue} be any 3-edge-

colouring of G. We consider an auxiliary graph F , with V (F ) = V (G) and ij ∈
E(F ) if and only if there is a monochromatic path in G (with respect to the
colouring c). Then we define a 3-edge-colouring c′ of F with c′(ij) being the
color of any monochromatic path in G connecting i to j. Note that any covering
of F with monochromatic trees (with respect to the colouring c′) corresponds to
a covering of G with monochromatic trees (with respect to the colouring c) with
the same number of trees.

We now consider different cases depending on the value of α(F ). If α(F ) = 1,
then F is a complete 3-coloured graph and therefore, by a result of Erdős, Gyárfás
and Pyber [4], there exists a partition of V (F ) into 2 monochromatic trees and
thus a covering of G with 2 monochromatic trees. The proof now is divided into
two cases: (i) α(F ) = 2 and (ii) α(F ) ≥ 3.

Let us consider the case (ii) first. In this case, there exist three vertices r, b, g ∈
V (G) that pairwise do not have any monochromatic path connecting them. They
a.a.s. have a common neighbourhood of size at least np3/2. Let J be the largest
subset of this common neighbourhood such that for each i ∈ {r, b, g}, the edges
from i to J are all coloured with one colour. Then |J | ≥ np3/12 and since there
are no monochromatic paths between any two of r, b, g, we may assume that all
edges from r to J are red, all from b to J are blue and those from g to J are
green. Now we notice that all vertices that have a neighbour in J are covered by
the union of the spanning trees of the red component of r, the blue component
of b and the green component of g.

So we would be done if every vertex has a neighbour in J . If this is not the
case, then let Y = V \ N(J) be the set of those vertices that have no neighbour
in J . By the value of p, we get that a.a.s. every vertex y ∈ Y will have many
common neighbours with r, g and b that are also neighbour of some vertex in J .
With some careful analyse on the possible colouring of the edges of those common
neighbours, we are able to show that for some i ∈ {r, g, b} (let us say, w.l.o.g.,
i = r), every vertex y ∈ Y can be connected to r by a monochromatic path in
colour red or either to g or b by a monochromatic path in the colour blue or green,
respectively.
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This already gives us that all vertices in G can be covered by 5 monochromatic
trees, since all the vertices in N(J) lie in the red component of r, or the green
component of g, or in the blue component of b and every vertex in V rN(J) lie in
the blue component of g or in the green component of b. By analysing the colours
of edges to the common neighbourhood of carefully chosen vertices, we are able to
show that actually three of those five trees already cover all the vertices of G.

Now, we only have case (i) left. Before diving into the idea of the proof for the
case (i), let us do a small regression. Let H be a hypergraph. We say that a set
A of hypervertices of H is a vertex cover if every hyperedge of H has at least one
element of A. The covering number of H, denoted by τ(H), is the smallest size of
a vertex cover in H. A matching in H is a collection of disjoint hyperedges in H.
The matching number of H, denoted by ν(H), is the largest size of a matching in
H. A conjecture by Ryser [8] states that for every r-uniform r-partite hypergraph
H we have τ(H) ≤ (r− 1)ν(H). Aharoni [1] proved that Ryser’s conjecture holds
for r = 3, but for larger r, it is still open.

Given a graph G and an r-edge-colouring of G, let us consider a hypergraph H
defined as follows (such a construction is due to Gyárfás [6]). The hypervertices of
H are the monochromatic components of F and r hypervertices form a hyperedge if
the corresponding r monochromatic components have a non empty intersection (in
particular they must be of different colours). Hence H is a r-uniform r-partite hy-
pergraph. Now observe that tcr(G) ≤ τ(H), for if A is vertex cover of H, then the
monochromatic components associated to the hypervertices in A cover all the ver-
tices of G. In fact, if v ∈ V (G) is not covered by those monochromatic components
associated to the vertex cover A, then the monochromatic components of each
colour containing v form a hyperedge of H which does not intersect A, contradic-
ing the fact that A is vertex cover of H. Further, notice that ν(H) ≤ α(G) because
for each matching E1, . . . , Ek in H we can choose distinct vertices v1, . . . , vk, each
vi belonging to the intersection of the r monochromatic components associated
to Ei. Then if we had k > α(G), two vertices among v1, . . . , vk would be adjacent
and would therefore share one monochromatic component. But that would mean
that their corresponding hyperedges intersect. The two observations above give
us that Ryser’s conjecture implies that tcr(G) ≤ (r − 1)α(G).

Now, back to our proof, we are considering case (i) where we have α(F ) = 2.
The observations in the previous paragraph already imply that tc3(F ) ≤ 4. But
we want to prove that tc3(F ) ≤ 3. To this aim, we make use of Gyárfás’ construc-
tion more carefully, reducing the situation to few possible settings of components
covering all vertices. In each of those, we can again analyse the possible colourings
of edges to the common neighbourhood of specific vertices, inferring that indeed 3
monochromatic components cover all vertices.
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